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Abstract

Conditional Random Fields (CRF's) can be used as a dis-
criminative approach for simultaneous sequence segmen-
tation and frame labeling. Latent-Dynamic Conditional
Random Fields (LDCRFs) incorporates hidden state vari-
ables within CRFs which model sub-structure motion pat-
terns and dynamics between labels. Motivated by the suc-
cess of LDCRFss in gesture recognition, we propose a frame-
work for automatic facial expression recognition from con-
tinuous video sequence by modeling temporal variations
within shapes using LDCRFs. We show that the proposed
approach outperforms CRFs for recognizing facial expres-
sions. Using Principal Component Analysis (PCA) we study
the separability of various expression classes in lower di-
mension projected spaces. By comparing the performance
of CRF's and LDCRFs against that of Support Vector Ma-
chines (SVMs), we demonstrate that temporal variations
within shapes are crucial in classifying expressions espe-
cially for those with a small range of facial motion like
anger and sadness. We also show empirically that only
using changes in facial appearance over time, without us-
ing shape variations, is not sufficient to obtain high perfor-
mance for facial expression recognition.

1. Introduction

The recognition of facial expressions is a necessary first
step for meaningful interactions between humans and com-
puters. A reliable Automatic Facial Expression Recogni-
tion (AFER) system will improve the way in which humans
interact with machines. Facial Expressions in humans are
inherently dynamic in nature, consisting of an onset, peak
and an offset phase. The entire event from onset to offset is
usually very short in duration, and often the muscle motions
on the face are very subtle. This makes the problem of rec-
ognizing facial expressions very challenging. In this paper,
we consider the problem of recognizing facial expressions
from video sequences and formulate it as a sequence label-
ing problem, where we try to label every frame with the

correct facial expression or neutral state.

We propose a new approach for recognizing six basic ex-
pressions (anger, disgust, fear, happiness, sadness and sur-
prise) along with a neutral state, by modeling temporal dy-
namics of face shapes. Our approach uses discriminative
Latent-Dynamic Conditional random fields (LDCRFs) [1 1],
and we show that incorporating hidden states in traditional
Conditional Random Fields (CRFs) [8] model is an effec-
tive way to model the subtle changes which happen over
time in face shapes. This helps in distinguishing between
facial expressions which have large overlapping motion pat-
terns. We also empirically show that classifiers which use
temporal variations between shapes outperform those which
do not consider this information for the task of facial ex-
pression recognition. Finally, we compare the ability to
recognize facial expressions using shape variability versus
appearance variability and show that variations in shape are
much more important than appearance for facial expression
recognition from continuous video.

The remainder of the paper is organized as follows: We
review the related work in the next section, followed by a
description of the features used in our work along with the
formulation of both CRFs and LDCRFs. We then present
various experiments and compare the results followed by
conclusions.

2. Related Work

Facial Expression Recognition has been an area of in-
terest among researchers for several decades. Traditionally,
most research for designing such a system has been focused
on recognizing expressions from static images. Methods
using geometric distances, gabor filter responses and local
binary patterns [19, 2, 15] have been successfully applied
in this domain. A comprehensive survey of some of these
techniques may be found in [12].

Recently, there has been a strong interest in modeling the
temporal dynamics of facial expressions to build such sys-
tems. The psychological experiments carried out in [, 3]
strongly suggest that modeling facial movements in time
is a crucial factor in discriminating between facial expres-
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Figure 1. Shapes of various Facial expressions after Generalized Procrustes Analysis. The 5643 face shapes from the dataset grouped by
expression labels and aligned using Generalized Procrustes Analysis can be seen here. This figure demonstrates that shapes for some of
the expressions like surprise and happiness are easily distinguishable while for other expressions there is a considerable similarity in the

face shape. Red dots represent the mean shape.

sions. Here we review some of the work that is closely re-
lated with recognizing facial expressions using temporal in-
formation.

Cohen et al. [4, 5] use a tree-augmented-naive Bayes
classifier (TAN) for continuous videos to learn the correla-
tion between motions of different facial regions and expres-
sions. The authors in [23] propose a method using moment
invariants along with Hidden Markov Models (HMMs) to
analyze facial expressions. In [22] a volume based appear-
ance descriptor is proposed to recognize facial expressions
in image sequences. The authors consider a given image se-
quence as a whole and classify the entire sequence into one
of the expression classes. But for a practical application,
a facial expression system must be able to classify images
as they come; therefore, a solution which can model the
transition between various expressions and label each im-
age continuously is more desirable.

Conditional Random Fields (CRFs), which provide one
such solution, were introduced in [&]. These are discrimina-
tive models which define a conditional probability p(Y|X)
over label sequences Y given a particular observation se-
quence X. The primary advantage of CRFs over genera-
tive models like HMMs [13] comes from the fact that mod-
els like HMMs try to define a joint probability distribution
p(X,Y) over observation sequences X and their label se-
quences Y [18]. To make the model computationally feasi-
ble, strong independence assumptions among observations
are required. In the case of CRFs, the independence as-
sumption has to be made for label sequences and not for
observations. Hence, CRFs prove to be more robust in com-
parison [&].

Sminchisescu et al. [16] have shown the effectiveness
of CRFs in recognizing several human motions like walk-
ing, running etc. Their method outperforms HMMs and
even provides good results for differentiating between sub-
tle motion patterns like normal walk vs. wander walk. The
authors in [7] use CRFs to classify facial expressions from
image sequences. Their work aims at designing a complete
facial expression recognition system but does not provide
a detailed analysis on the importance of using temporal in-
formation for performing this task. In this paper, we show

that the dynamics of shape contain much richer information
to recognize expressions in comparison with analyzing each
shape individually. We also use CRFs as one of the under-
lying discriminative classifiers to compare the performance
of our proposed approach.

The variants of CRFs which include hidden states have
been successfully applied for gesture recognition 1). to la-
bel the entire sequence as a whole using Hidden Condi-
tional Random Fields (HCRFs) [21] or 2). to label every
frame with the appropriate gesture class using Latent Dy-
namic Conditional Random Fields (LDCRFs) [11]. It has
been shown that these approaches are good at capturing
subtle motion patterns using hidden states. Our proposed
approach using LDCRFs is more robust in modeling facial
expressions as compared to CRFs which shows that captur-
ing subtle facial motion is very essential in differentiating
between facial expressions.

3. Methods

In this section we explain the features and classification
methods used for our work. Section 3.1 & Section 3.2 gives
an overview of the shape and appearance features which
were used, while Section 3.3 and Section 3.4 discuss the
CRFs and LDCRFs methods which were used to model the
temporal variations of these features for facial expression
recognition.

3.1. Shape Features

A 2D face shape for our work is represented by a set
of 68 landmark points which are basically located around
the contours of the eyebrows, eyes, nose, chin, inner lips
and outer lips. The distribution of these landmark points
on the face can be seen in Figure 1. The task of localizing
these landmark points on the face is itself a very challenging
problem. Several techniques like Active Appearance Mod-
els [6], Piecewise Bezier Volume Deformation (PBVD) [14]
etc. have been proposed to solve it. In order to perform a
robust shape analysis for different expression shapes, it’s
important to obtain their true shapes by removing the ef-
fects of rigid geometric transformations such as translation,
scale and rotation between them.
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Figure 2. Comparison between first 3 Principal Components (Shape Features) for neutral images with other expressions(Neutral is shown
in red in all figures). This figure demonstrates that some neutral images are very close to the expression images in the PCA space. These
neutral images mostly correspond to the transition phase from the neutral to the actual expression. Especially for anger and sadness there
is a significant overlap which makes these expressions difficult to recognize in presence of neutral images.

We use Generalized Procrustes Analysis for this task
[17], which tries to minimize the sum-of-squared distances
between landmark points of all the shapes w.r.t. the rigid
transformations. In the initial step, the first shape is as-
sumed to be the mean shape. Then, a similarity transform is
applied on all the shapes to align them with the mean shape.
After this alignment, the mean shape is recomputed by av-
eraging the aligned shapes, and then the process of applying
the transforms and mean computation is repeated until the
change in the mean shape becomes negligible.

Figure 1 shows the aligned face shapes after General-
ized Procrustes Analysis is applied to all the shapes in the
dataset. It can be observed that some expressions such as
surprise have very distinct shapes while others such as anger
and sadness show a certain degree of similarity. After per-
forming the alignment, the true shape which remains gives
us a 136 dimensional feature vector.

We apply Principal Component Analysis (PCA) to re-
duce the dimensionality to 18 by retaining 95% of the vari-
ance which forms the input for our classifiers. For practi-
cal applications, it’s important to consider even the neutral
state while designing classifiers for facial expressions. In-
troducing the neutral state makes the task of recognizing
facial expressions more difficult. Many subtle expressions
like anger and sadness do not cause much facial movement,
therefore they are difficult to differentiate from the neutral
state. Also, it is very difficult to make a clear distinction
between the end of a neutral state and the onset of an ex-
pression even for humans. It makes the task of ground-truth
labeling very challenging.

These issues are clearly highlighted in Figure 2 which
shows a comparison between first 3 Principal Components
of shape features for neutral images with other expressions.
For all the expressions, neutral shows some overlap with the
actual expressions. These shapes mostly correspond to the
transition phase where it’s difficult to tell if a shape belongs
to the neutral state or to the actual expression. The plots
corresponding to anger and sadness show a lot of overlap
with neutral shapes in the PCA space, which makes it diffi-
cult to recognize these expressions in presence of the neutral

shapes.

3.2. Appearance Features

One of the aims of this paper is to experimentally show
the importance of temporal variations in shape as compared
to the temporal variations in appearance for facial expres-
sion recognition.

We use histogram based Uniform Local Binary Pattern
(U-LBP) [15] features which are commonly used for facial
expression recognition to conduct our experiments. In this
method, the LBP operator is applied on a pixel by thresh-
olding its circular neighborhood with the intensity value of
the pixel and representing it in binary form (1 if the inten-
sity value of the neighboring pixel is greater than the current
pixel, O otherwise). The patterns which contain at most two
bitwise transitions from 0 to 1 or vice versa are called uni-
form local binary patterns. It was observed that uniform
patterns form the majority of the observed patterns [15],
hence to construct the histogram, all unique uniform pat-
terns are binned separately while all non-uniform patterns
are assigned to a single bin. We use an 8 pixel neighbor-
hood which gives us a 59 bin histogram.

It has been shown[15] that using a single histogram for
the entire image is not a good technique for facial expres-
sion recognition, hence the cropped face image is subdi-
vided into 42 regions using a 6 x 7 grid (see Figure 3). Then
a separate histogram is computed for each sub-region which
gives us a feature vector of length 2478. Principal Compo-
nent Analysis (PCA) is applied to reduce the dimensionality
to 59 by retaining 95% of the variance.

3.3. Conditional Random Fields (CRFSs)

CRFs provide a highly discriminative and probabilistic
method [8] to model the variation of shapes in time. For
comparison with our proposed approach, we use the basic
linear chain CRFs for the task of facial expression recogni-
tion. (Figure 4).

For notational simplification, we refer the observation
sequences (X1,X2,X3,......X7) as X and label sequences
(Y1,Y2,Y3,......Y7) as Y for T frames to be labeled. Here
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Figure 3. Compuation of Uniform Local Binary Pattern (U-LPB)
Histogram. The face image is divided into 6 x 7 grid and then a
separate U-LBP histogram is computed within each grid by apply-
ing the ULBP operator on every pixel in the grid as shown.

Expression Labels

Observation Sequences

Figure 4. Linear Chain Conditional Random Fields.

each X;, i € (1,2...T) is a random variable representing
either the shape or the appearance features and each Y;, i
€ (1,2...T) is a random variable representing the expres-
sion label or neutral state.

A CRF model for T image frames is formulated as fol-
lows:

1
P(Y[X;0) = mexp Zeij(er) (1)
’ J
where,
T
Fi(V,X) =Y f;(Yi1, Y1, X, 1) 2)
t=1
Z(X,0)=> exp | > 0,;F;(Y,X) 3)
Y j

Here, Z(X,0) is the normalization factor and each
fi(Yi—1,Y:, X, t) is either a state function st;(Y;, X, t)

which evaluates the interaction between features or a tran-
sition function tr;(Y;—1,Y:, X, t) which models the tem-
poral dependencies among features [20]. Given a set of N
labeled training samples, the objective of the training pro-
cedure is to estimate the set of weights 0* which maximizes
the conditional log likelihood (i.e. 6* = argmax, L(6)) by
optimizing the conditional log likelihood function given by
equation (4).

2

1
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For our work, we use Broyden Fletcher Goldfarb Shanno
(BFGS) [10] gradient ascent technique for optimizing the
log likelihood function. To classify an unseen test sequence
Xtest We can find the most likely labels Y* for the sequence
using the learned parameters 6* and equation 1 by Viterbi
decoding.

3.4. Latent-Dynamic Conditional Random Fields
(LDCRFs)

CRFs provide a strong discriminative framework to
model the transitions between facial expressions, but they
fail to model the subtle facial motions within an expression
which is very important in order to differentiate between
similar facial expressions.

In [11] a variant of traditional CRFs known as Latent-
Dynamic Conditional Random Fields (LDCRFs) was pro-
posed which captures the subtle motion patterns within a
class along with inter-class motion patterns by associating
a set of hidden states with each class label. These hidden
states can model the internal sub-structure for different fa-
cial expressions and contribute in the overall likelihood for
recognition. Each hidden state can be treated in a similar
manner as CRF, and the overall likelihood can simply be
the sum of individual likelihoods from the hidden states.

Expression Labels

Hidden States

Figure 5. Latent Dynamic Conditional Random Fields.

Observation Sequences



The LDCRF model uses an additional set of hidden vari-
ables H = (Hy,Hs,Hs,.....,H7) apart from X and Y for every
sequence (Figure 5). The model can then be defined over
parameters 6 as:

P(Y|X;0) = P(Y|H,0)P(H|X,0) (5)
H

The LDCRF model imposes a restriction that sets of hidden
states for each class label needs to be disjoint. This implies
that for a given class label Y,,, the set of possible hidden
states H,,, is constrained to a subset Hy,,, of all possible
hidden states. This assumption gives the following deter-
ministic relationship between Y and H:

. 1 VH,, € Hy,,
PY|H,0) = { 0  otherwise ©
Hence equation (5) can be refined as:
P(Y|X;6)= > P(H|X,0) (7

H:NHp€Hym

P(H|X,0) is then defined exactly as P(Y|X,0) is defined in
the previous section.

1
P(H|X;6) = 70X > 0;F;(H, X) (8)
’ J
where,
T
Fj(H,X) = fi(Hi—1, Hy, X, 1) ©)
t=1
Z(X,0)=> exp| > 0;F(H X) (10)
Y j

As in CRFs, Z(X,0) is the normalization factor and each
fj(Hi—1, Hy, X, t) is either a state function st;(Hy, X, t)
or a transition function tr;(H;—1, Hy, X, t) [20]. The pa-
rameter estimation and inference can then be performed in
a similar manner as with CRFs. For our work, we use Broy-
den Fletcher Goldfarb Shanno (BFGS) [10] gradient ascent
technique for optimizing the log likelihood function.

4. Experiments & Results

This section gives details about the dataset used for ex-
periments, followed by an overview of the experiments that
were conducted. We then present the results of various
experiments and compare the facial expression recognition
performance for all the techniques from various aspects.

4.1. Overview of the dataset

The experiments for our work were conducted on the Ex-
tended Cohn-Kanade Dataset (CK+) [9] which contains 593
sequences from 123 subjects. These are not fixed length se-
quences and the duration varies from 10 to 60 frames. All
the sequences start from the neutral pose to the peak forma-
tion of the expression. The locations of facial landmarks are
provided along with the dataset. Out of the 593 sequences
in the dataset only 309 were labeled as one of the six basic
expressions (see [9] for details). Table 1 gives the detailed
statistics for the portion of the dataset that was used. The ex-
pression onset for all sequences takes place after a certain
number of neutral frames; hence we manually label each
frame in a sequence to be either neutral or belonging to the
expression class. Figure 6 shows an example of one such
labeled sequence.

] Expression | No. of Sequences | Total No. of Images
Anger 45 1022
Disgust 59 868
Fear 25 546
Happiness 69 1331
Sadness 28 547
Surprise 83 1329
Total 309 5643

Table 1. Overview of the dataset.

EHEEIREE

Neutral Neutral Neutral Happiness Happiness Happiness

Figure 6. Example of a labeled sequence

4.2. Experiment Details

We perform experiments to show that modeling temporal
variation between shapes helps in recognizing those facial
expressions which are otherwise difficult to recognize us-
ing classifiers which do not model temporal dependencies.
For this, we compare the recognition performance of Sup-
port Vector Machines (SVMs) classifier trained on the shape
features and a baseline method [9] which also uses SVMs
against the performance of CRFs and our proposed method
of using LDCRFs for recognizing facial expressions. We
also show through experiments that modeling variation in
shape across time is much more important than modeling
variation in appearance across time for recognizing facial
expressions. To show this, we train both CRFs and LD-
CREFs classifiers using appearance features and compare the
performance with shape features.



All the experiments were conducted using 4-fold cross-
validation and the results were averaged over all the folds.
We evaluate the recognition performance in all the experi-
ments for two cases: 6-class (without neutral) and 7-class
(with neutral).

4.3. Static vs. Temporal Shape Analysis

For static shape analysis, we use the shape features de-
scribed in the previous section to train 6-class (without neu-
tral) and 7-class (with neutral) multi-class SVMs. The Ra-
dial Basis Function (RBF) kernel along with a grid search
to find the best values for C (penalty term) and ~y (kernel-
width) was used for training the SVMs. For temporal shape
analysis, we train a CRF model and validate the regulariza-
tion term during training. For inference, the model outputs
the marginal probabilities for each class label. The class la-
bel with the highest probability for each frame is used as the
predicted label for that frame. To train the LDCRF model
for our proposed approach, the optimal number of hidden
states and the regularization term were found using cross-
validation during training. It was observed that 5 hidden
states give the best results. The training procedure con-
verges in less than 100 iterations.

The results in Table 2 for 6-class classification and the
confusion matrices in Table 3, 4 show that Happiness and
Surprise are two expressions which are much easier to rec-
ognize as compared to other expressions. The recognition
performance for both static shape analysis and dynamic
shape analysis is very high for these two expressions. It is
an intuitive result as these expressions bring a large amount
of change in the shape of the face especially the mouth re-
gion and thus are relatively easy to recognize. For other
expressions such as anger and sadness which do not cause a
lot of deformation on the face, the temporal shape modeling
performs much better than static shape analysis.

The performance for the SVM based method is very low
for sadness - 63.7%. The sadness expression causes very
little deformation on the face and hence is very difficult to
recognize by looking at shape in isolation. The temporal
modeling using CRF improves the performance, but there is
a good deal of overlap in the motion pattern for sadness and
other expressions, hence the performance is relatively low.
The proposed approach using LDCRF successfully models
these overlapping patterns using hidden states and captures
the subtle differences which improves the accuracy signif-
icantly. For anger, disgust & fear both CRF and LDCRF
perform in a comparable manner.

Our approach also gives equivalent results for disgust,
happiness and surprise to the baseline method and outper-
forms it significantly for the other expressions.

The case for 7-class classification where we consider
neutral frames as well is relatively difficult, because some
expressions that have very little facial movement have very

An Di Fe Ha Sa Su
An [ 964 | 1.8 | 0.0 | 0.0 | 0.0 1.8
Di | 00 976 | 00 | 24 | 0.0 | 0.0
Fe | 00 | 00 | 925 | 0.0 1.0 | 65
Ha| 00 | 0.6 | 00 | 994 | 0.0 | 0.0
Sa 1.3 00 | 92 | 2.1 | 838 | 3.6
Su | 0.0 | 00 1.3 0.0 | 09 | 979

Table 3. Confusion Matrix for 6-class classification using CRFs

An Di Fe Ha Sa Su
An | 979 | 1.8 | 00 | 03 0.0 | 0.0
Di | 00 [ 979 | 00 | 2.1 0.0 | 0.0
Fe | 00 | 0.0 | 90.5| 0.0 | 04 | 9.1
Ha| 00 | 04 | 00 [ 99.6 | 0.0 | 0.0
Sa | 2.8 0.0 | 22 1.5 | 90.1 | 3.3
Su | 00 | 0.0 | 0.3 0.0 | 09 | 98.9

Table 4. Confusion Matrix for 6-class classification using pro-
posed method based on LDCRFs

similar shapes to the neutral shapes, which makes it hard
to discriminate between them. The temporal dynamics be-
tween shapes become much more important in this situa-
tion and the results in Table 7 show that this is indeed true.
As expected, the recognition performance of happiness and
surprise is very high for this case, using either the static
shape analysis or the dynamic shape analysis. Static shape
analysis gives very low performance for fear and sadness
expressions. Temporal shape analysis improves the recog-
nition rate significantly for these expressions. The confu-
sion matrix in Table 5 and Table 6 show that neutral frames
cause a good deal of confusion with subtle expressions such
as anger and sadness and make these expressions difficult
to recognize. It can be seen that the proposed LDCRFs
based method is capable of better discriminating between
the neutral and sadness shapes as compared to both SVMs
and CRFs.

Ne An Di Fe Ha Sa Su
Ne | 72.2 | 6.1 2.6 1.6 | 24 | 105 | 45
An | 206 | 735 | 00 | 0.0 | 0.0 | 538 0.0
Di 2.7 68 | 8.6 | 00 | 48 | 0.0 | 0.0
Fe | 00 | 0.0 | 00 {944 | 0.0 | 56 | 0.0
Ha | 0.5 1.0 | 0.5 0.0 | 98.1 | 00 | 0.0
Sa | 29.1 | 0.0 | 0.0 1.3 0.0 | 69.6 | 0.0
Su | 09 00 | 00 | 0.0 | 0.0 | 0.0 | 99.1

Table 5. Confusion Matrix for 7-class classification using CRFs

It was observed that misclassification usually occurs dur-
ing the transition phase from one expression to either neu-
tral or to an other expression. We have reported the results



Expression | Baseline [9] | LBP + CRF | LBP + LDCRF | Shape + SVM | Shape + CRF | Shape + LDCRF
(static) (dynamic) (dynamic) (static) (dynamic) (dynamic)
Anger 75.00 70.42 76.28 74.70 96.41 97.91
Disgust 94.70 85.54 86.01 87.13 97.60 97.86
Fear 65.20 67.61 80.05 88.77 92.51 90.52
Happiness 100.00 90.90 90.01 98.43 99.41 99.55
Sadness 68.00 60.2 58.68 63.70 83.83 90.08
Surprise 96.00 89.15 87.81 91.67 97.86 98.87
Average 83.15 77.30 79.81 84.06 94.60 95.79

Table 2. Recognition Rates Without Neutral Expression (6-class classification)

Ne An Di Fe Ha Sa Su
Ne | 73.5 | 6.0 1.6 19 | 26 | 92 | 52
An | 206 | 76.7 | 1.1 0.0 1.6 | 0.0 | 0.0
Di | 27 | 62 |85 | 00 | 96 | 0.0 | 0.0
Fe | 00 | 0.0 | 00 | 944 | 00 | 42 1.4
Ha | 05 1.0 | 00 | 00 | 986 | 00 | 0.0
Sa | 215 0.0 | 0.0 1.3 ] 00 | 77.2 | 0.0
Su | 09 | 00| 00| 00| 00 | 0.0 | 99.1

Table 6. Confusion Matrix for 7-class classification using pro-
posed method based on LDCRFs

based on the classification/misclassification of each frame
and not considering the dominant expression within a cer-
tain window of time. It makes the problem harder because,
it’s very difficult to label the ground-truth for frames which
lie in the transition phase. For practical applications, accu-
rate labeling of every frame may not be required.

4.4. Temporal Shape vs. Appearance in Time

The appearance of the face changes in form of wrinkles
and furrows which appear when an expression is exhibited.
In this section, we show that in contrast with shape fea-
tures, temporal variations in appearance alone is not suf-
ficient to recognize facial expressions with high accuracy.
Using CRF and LDCREF techniques, we model Uniform Lo-
cal Binary Pattern (ULBP) based appearance features which
are known for their ability to capture these micro patterns
(e.g. wrinkles and furrows) on the face and have been suc-
cessfully used for static facial expression recognition. The
results in Table 2 clearly show that except for happiness and
sadness the performance is much lower in comparison with
the performance of dynamic shape analysis. The interesting
thing to note here is that the performance becomes worse on
introducing the neutral state (Table 7). The reason for this
lies in the fact that for expressions like anger, disgust and
sadness the small amount of facial motion does not bring
a significant change in the appearance in comparison with
the neutral face which results in a considerable overlap of
appearance features between them. This makes it very dif-

ficult to distinguish these expressions from the neutral state
using just the appearance. These experiments show that dy-
namics of shape and especially ability to capture the subtle
motion patterns on the face is very important for robust fa-
cial expression recognition.

5. Conclusion

We presented a new approach for facial expression
recognition from video sequences using Latent-Dynamic
Conditional Random Fields (LDCRFs). The results of our
approach show that the expressions such as surprise and
happiness which bring significant changes in face shapes
are relatively easy to recognize. For other more subtle ex-
pressions, classification methods which do not consider the
temporal variation between shapes fail to achieve a good
recognition rate. Sadness and anger are two of the most
difficult expressions to classify especially in the presence
of neutral frames. The proposed method was able to per-
form better as compared to other techniques for these ex-
pressions. This shows the importance of modeling small fa-
cial motions effectively for recognizing facial expressions.

The experiments show that shape provides much richer
information as compared to appearance, and modeling ap-
pearance changes in isolation without considering shape
changes is not sufficient for robust facial expression recog-
nition. In the future, we want to evaluate the performance
of our approach by training and testing it across various
datasets and further extending it to work with a live video
feed.
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Expression | LBP + CRF | LBP + LDCRF | Shape + SVM | Shape + CRF | Shape + LDCRF
(dynamic) (dynamic) (static) (dynamic) (dynamic)
Neutral 87.80 85.41 71.32 72.17 73.46
Anger 61.59 62.73 77.09 73.54 76.71
Disgust 65.22 66.80 82.77 85.62 81.51
Fear 47.20 55.43 75.81 94.37 94.37
Happiness 87.84 84.28 96.92 98.06 98.55
Sadness 49.37 51.17 56.15 69.62 77.22
Surprise 91.28 93.76 97.45 99.06 99.06
Average 70.05 71.36 79.64 84.64 85.84
Table 7. Recognition Rates With Neutral Expression (7-class classification)
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