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Which Image Pairs Will Cosegment Well?

Predicting Partners for Cosegmentation
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Motivation

Cosegmentation

Query High  Compatibility for cosegmentation

We propose to predict which pairs of images are likely to
successfully cosegment together.

Learn to rank successful “partners” more highly than those
that would cosegment poorly, based on inter-image
features revealing compatibility.

Not every image pair is mutually
compatible for cosegmentation.
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Inter image features:
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Learning to rank cosegmentation partners:

Learn a ranking function to predict the compatibility score for a
given image pair:  f(¢(1%,I°)) = w!l (1%, I°)

Training: SVM rank formulation [Joachims 2002] :
O: Set of pairs of all training tuples {(7, 7), (¢,k)} s.t. 0;; > 0%
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Use dense matching
to establish pixel
correspondences
between image pairs

r=p+ Fys(p)

Corresponding pixels between image pair should
take same labels. St

w! (T, T7) > w' ¢(T*, T%) + 1 — &, V(i,5,k) € O
Testing: Given a query image I9 and candidate set P
I =argmax f(¢(19,1°)) VI° €P

Training data for ranking:

Ranked list of
coseg-partners for
each training image

Generate all Apply paired-image
image pairs from =2 cosegmentation for
training data each pair

‘ Partner with the highest compatibility is selected for cosegmentation ‘

Results
MIT Object Discovery dataset:

Single Joulin
Seg Random GIST [CVPR 2010]

Upper

Ours-k bound

Class Ours

39.14

Airplane 42.22 | 42.34

Car | 46.76 | 52.47 | 50.95| 37.15 | 53.63| 54.31 | 61.81
Horse | 49.82| 51.69 |52.73 | 30.16 | 50.18 | 52.86 | 63.52
Caltech-28 dataset:
Class Single Random  GIST
Seg
brain | 73.31 | 7243 | 72.54 | 75.73 76.09 | 76.22
ferry | 5499 | 5587 | 5523 | 57.64 57.71 | 58.02 d Y Dbetbcmmema VS
joshua tree| 53.04 | 54.05 | 54.45 | 56.21 57.12 | 57.52 GoUEER (| = == Nnagmm A A
motorbike 57.38 | 55.86 | 55.79 | 57.21 | 5812 | 58.59 R NIRRT e
lotus | 76.71 | 7598 | 78.38 77.59 79.51 80.16 o -

Our method outperforms the baselines in most
cases which shows that carefully choosing

cosegmentation partners is important

Our method chooses partners that have more fine-
grained compatibility with the query image




